

Development of an Improved Amylose-based Chiral Stationary Phase with Excellent Preparative Performance

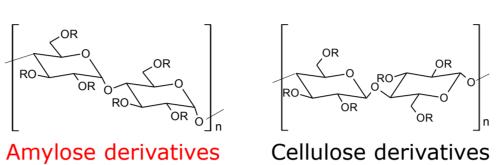
Tsuyoshi Watabe¹, Masahide Kobayashi¹, Yoshihiko Yamada¹, Takehiro Iwadate¹, Junko Iwadate¹, Tomoko Izukawa¹, Chihiro Morita¹, Saoko Nozawa¹, Noritaka Kuroda¹ and Jeffrey A. Kakaley²

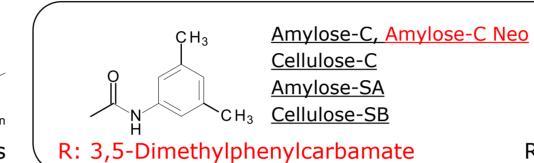
1YMC CO., LTD., 2YMC America Inc.

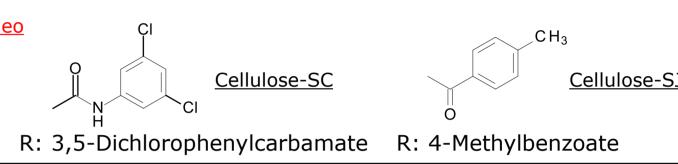
Introduction

Preparative chiral chromatography plays an increasingly important role in the pharmaceutical, fine chemicals, and food industries. Polysaccharide-based chiral stationary phases have been the most commonly applied stationary phases for prep-scale chiral chromatography. YMC has commercially produced 6 types of chiral stationary phases based on coated or immobilized 3, 5, 10 and 20 μm silica particles. These phases exhibit excellent chiral separation performance for a wide range of racemic compounds. Among them, amylose tris(3,5-dimethylphenylcarbamate) coated on silica particles (CHIRAL ART Amylose-C) was the most commonly used chiral stationary phase for our HPLC/SFC contract purification service.

Recently we succeeded at improving both the HPLC and SFC performance of our amylose tris(3,5-dimethylphenylcarbamate) coated phase by developing a new manufacturing process. This new phase (CHIRAL ART Amylose-C Neo) is the improved version of CHIRAL ART Amylose-C, and exhibits increased resolution (Rs) on separations of many racemic compounds, compared to CHIRAL ART Amylose-C as well as other conventional products. Additionally, CHIRAL ART Amylose-C Neo is expected to give better peak shape under high loading, resulting in excellent preparative performance.


In this poster, we present the improved preparative performance of CHIRAL ART Amylose-C Neo through various examples.


Hit ratio of chiral stationary phases for various compounds ■ Hit criteria: Rs>1.5 Cellulose-SJ (2018~) Database: Based on screening result of ca. 0.5% No hit 400 samples at our HPLC/SFC contract 9% purification service **Amylose-C 27%** This work **Cellulose-SC** 20% Aimed to improve of preparative Contract HPLC/SFC purification service performance of Amylose-C $(2015\sim2018)$ <u>Cellulose-C</u> **15% Cellulose-SB** 15% **Amylose-SA** 13% ■ The 6 available CPSs can cover >90% of chiral separation of racemates Amylose-C was the most commonly used CSP for our HPLC/SFC purification service


Product lineup of chiral stationary phases consisting of polysaccharide derivatives

_						
Product name	Base material	Particle size (µm)	Chiral selector	Туре	Usable pH range	Pressure limit
CHIRAL ART Amylose-C		3 5 10	Amylose tris (3,5-dimethylphenylcarbamate)	Coated	_	4350 psi (30 MPa)
"New" CHIRAL ART Amylose-C Neo	Porous silica					
CHIRAL ART Cellulose-C		20	Cellulose tris (3,5-dimethylphenylcarbamate)			
CHIRAL ART Amylose-SA		3 5 10 20	Amylose tris (3,5-dimethylphenylcarbamate)		2.0 — 9.0	4350 psi (30 MPa)
CHIRAL ART Cellulose-SB	Porous silica		Cellulose tris (3,5-dimethylphenylcarbamate)	Immobilized		
CHIRAL ART Cellulose-SC			Cellulose tris (3,5-dichlorophenylcarbamate)	Titiiiiobiiized		
CHIRAL ART Cellulose-SJ *			Cellulose tris(4-methylbenzoate)			

 * 10 and 20 μm particles of CHIRAL ART Cellulose-SJ will be available in the future.

- Excellent mechanical stability based on high strength super-wide pore silica gel
- \blacksquare Available in 3, 5, 10 and 20 μm covering analytical to preparative applications
- Effective for cost reduction of analytical to preparative chiral separations

Comparison of chiral separation selectivity of a wide variety of racemic compounds

		Separation factor (a)						
Compounds	Eluent		Coated type	Immobilized type				
Compounds	2146116	Amylose-C Neo	Amylose-C	Competitor's Product	Amylose-SA	Competitor's Product		
trans-Stilbene oxide	Hex/IPA (90/10)	3.2 ↑	2.9	3.0	2.7	2.8		
	CO ₂ /MeOH (80/20)	2.0 1	1.8	1.9	1.2	1.2		
Benzoin	Hex/IPA (90/10)	1.4 ↑	1.3	1.3	1.2	1.2		
<i>N</i> -CBZ-DL-Alanine	Hex/IPA/TFA (80/20/0.1)	2.2 1	2.0	2.2	1.7	1.7		
Ibuprofen	Hex/IPA/TFA (99/1/0.1)	1.1	1.1	1.1	1.1	1.1		
Propranolol	Hex/IPA/DEA (80/20/0.1)	×	×	×	×	×		
Verapamil	Hex/IPA/DEA (90/10/0.1)	1.3	1.3	1.3	1.2	1.2		

Preparative performance of new amylose-based chiral stationary phase; Amylose-C Neo Ex) Flavanone Alcyon SFC CSP Amylose-C Neo Competitor's product Rs: 10.8 — Alcyon SFC CSP Amylose-C CHIRAL ART Amylose-C Neo <Analytical SFC condition> —— CHIRAL ART Amylose-C <Analytical HPLC condition> : 5 μm, 250 x 4.6 mm i.d. Column Rs: 10.5 : 5 μ m, 250 x 4.6 mm i.d. Column Eluent : CO₂/EtOH (80/20) Rs: 11.7 Eluent : Hex/EtOH (90/10) : 3.0 ml/min Flow rate : 1.0 ml/min Flow rate : UV at 220 nm Detection Rs: 10.1 : UV at 254 nm Detection : 13.8 MPa (2,000 psi) Back pressure Rs: 10.8 : 25°C Temperature : 35°C Temperature Injection : 10 µl (0.1 mg/ml) : 5 μl (1 mg/ml) Injection System : NexeraXR (Shimadzu) : ACQUITY UPC² (Waters) System 7.5 10 <Pre><Preparative HPLC condition> <Pre><Preparative SFC condition> Fr.1 Fr.2 mAU Fr.2 Fr.1 : 5 μ m, 250 x 20 mm i.d. Column : 5 μ m, 250 x 20 mm i.d. Column UV at 280 nm 250 : Hex/EtOH (90/10) Eluent Eluent : CO₂/EtOH (80/20) 200 : 20 ml/min Flow rate : 60 ml/min Flow rate Amylose-C Neo Amylose-C Neo 100 : UV Detection Detection : UV at 280 nm Loading: 60 mg) (Loading: 160 mg) : ambient Temperature Back pressure : 15 MPa (2,175 psi) : 30°C Temperature 7.5 10 12.5 15 17.5 min CHIRAL ART Amylose-C Neo exhibited AU in SFC, the Alcyon SFC Fr.1 Fr.2 improved peak shape under high Amylose-C Neo column showed 100-UV at 220 nm loading compared to Amylose-C. This greater loadability than Alcyon SFC enabled higher loading. Amylose-C. It was suggested that the combination of SFC and Alcyon SFC Amylose-C Amylose-C Amylose-C Neo improved separation (Loading: 60 mg) (Loading: 30 mg) efficiency by 3.5 times compared to the combination of HPLC and Amylose 7.5 12.5 15 min C. **HPLC SFC**

Applications of Amylose-C Neo 1,2-Bis[(2-methoxyphenyl)phenylphosphino]ethane mAU 900-(R,R)800 700 a: 1.9 Rs: 10.9 500 Cf) Amylose-C 300 Rs: 7.1 200 100-7.5 10 : 5 μm, 250 x 4.6 mm i.d. : Hex/IPA (90/10) : 1.0 ml/min Temperature: 25°C : UV at 285 nm : 10 µl (0.5 mg/ml) 2,2'-Isopropylidenebis(4-phenyl-2-oxazoline) mAU 1400 1200 (S,S)a: 3.1 Rs: 13.8 1000 -(R,R)Cf) Amylose-C a: 2.5 Rs: 7.6 600 400 -: 5 μm, 250 x 4.6 mm i.d. : Hex/IPA (70/30) : 1.0 ml/min Temperature: 25°C : UV at 210 nm : 10 µl (0.5 mg/ml)

CHIRAL ART Amylose-C Neo showed enhanced

resolution (Rs) on many racemic compounds

compared to CHIRAL ART Amylose-C.

Conclusions

Yield (%)

Enantiomeric purity (%ee)

Productivity* (mg-product/hr)

Fractionated liquid volume (L-solvent/g-product)

■ The new amylose-based chiral stationary phase (Amylose-C Neo) is an upgraded model of Amylose-C with enhanced resolution in both HPLC and SFC.

490 ← × 2.9

Amylose-C Neo

Fr. 2

>99.9

99.4

0.54

Fr. 1

>99.9

94.2

464

0.34

* Injection intervals; [Amylose-C Neo] SFC: 2.7 min, HPLC: 9.0 min, [Amylose-C] SFC: 2.5 min, HPLC: 9.0 min.

■ It was suggested that Amylose-C Neo could show 2-3 times higher loadability than Amylose-C. This suggests that Amylose-C Neo could improve productivity per unit time by 2-3 times.

Amylose-C

Fr.2

99.7

93.7

169

2.88

Fr. 1

>99.9

95.7

172

1.15

Amylose-C Neo

Fr. 1

99.9

95.7

595

0.18

Fr. 2

99.7

>99.9

0.26

650 ←

Amylose-C

Fr. 2

99.8

95.6

344

0.57

Fr. 1

>99.9

94.5

340

0.39