Development of an Improved Amylose-based Chiral Stationary Phase with Excellent Preparative Performance Tsuyoshi Watabe¹, Masahide Kobayashi¹, Yoshihiko Yamada¹, Takehiro Iwadate¹, Junko Iwadate¹, Tomoko Izukawa¹, Chihiro Morita¹, Saoko Nozawa¹, Noritaka Kuroda¹ and Jeffrey A. Kakaley² ¹YMC CO., LTD., ²YMC America Inc. ### Introduction Preparative chiral chromatography plays an increasingly important role in the pharmaceutical, fine chemicals, and food industries. Polysaccharide-based chiral stationary phases have been the most commonly applied stationary phases for prep-scale chiral chromatography. YMC has commercially produced 6 types of chiral stationary phases based on coated or immobilized 3, 5, 10 and 20 μm silica particles. These phases exhibit excellent chiral separation performance for wide range of racemic compounds. Among them, amvlose tris(3,5dimethylphenylcarbamate) coated on silica particles (CHIRAL ART Amylose-C) was the most commonly used chiral stationary phase for our HPLC/SFC contract purification service. Recently we succeeded at improving both the HPLC and SFC performance of our amylose tris(3,5-dimethylphenylcarbamate) coated phase by developing a new manufacturing process. This new phase (CHIRAL ART Amylose-C Neo) is the improved version of CHIRAL ART Amylose-C, and exhibits increased resolution (Rs) on separations of many racemic compounds, compared to CHIRAL ART Amylose-C as well as other conventional products. Additionally, CHIRAL ART Amylose-C Neo is expected to give better peak shape under high loading, resulting in excellent preparative performance. In this poster, we present the improved preparative performance of CHIRAL ART Amylose-C Neo through various examples. ### Hit ratio of chiral stationary phases for various compounds - The 6 available CPSs can cover >90% of chiral separation of racemates - Amylose-C scored the highest "hit ratio" and was the most commonly used CSP for our HPLC/SFC ### Product lineup of chiral stationary phases consisting of polysaccharide derivatives | Product name | Base
material | Particle
size (µm) | Chiral selector | Туре | Usable
pH range | Pressure
limit | |--------------------------------|-----------------------|--|--|-------------|----------------------|-------------------| | CHIRAL ART Amylose-C | | ď | | | | | | "New" CHIRAL ART Amylose-C Neo | Porous 5
silica 10 | Amylose tris (3,5-dimethylphenylcarbamate) | Coated | - | 4350 psi
(30 MPa) | | | CHIRAL ART Cellulose-C | | 20 | Cellulose tris (3,5-dimethylphenylcarbamate) | | | | | CHIRAL ART Amylose-SA | | | Amylose tris (3,5-dimethylphenylcarbamate) | | 2.0 - 9.0 | 4350 psi | | CHIRAL ART Cellulose-SB | Porous | Porous 5
silica 10 | Cellulose tris (3,5-dimethylphenylcarbamate) | T | | | | CHIRAL ART Cellulose-SC | silica | | Cellulose tris (3,5-dichlorophenylcarbamate) | Immobilized | | (30 MPa) | | CHIRAL ART Cellulose-SJ* | | | Cellulose tris(4-methylbenzoate) | | | | * 10 and 20 µm particles of CHIRAL ART Cellulose-SJ will be available in the future - Excellent mechanical stability based on high strength super-wide pore silica gel - Available in 3, 5, 10 and 20 µm covering analytical to preparative applications - Effective for cost reduction of analytical to preparative chiral separations ### Comparison of chiral separation selectivity of a wide variety of racemic compounds | | | Separation factor (a) | | | | | | | | |-----------------------|----------------------------------|-----------------------|-------------|-------------------------|------------|-------------------------|--|--|--| | Compounds | Eluent | | Coated type | Immobilized type | | | | | | | compounds | Lident | Amylose-C Neo | Amylose-C | Competitor's
Product | Amylose-SA | Competitor's
Product | | | | | trans-Stilbene oxide | Hex/IPA
(90/10) | 3.2 ↑ | 2.9 | 3.0 | 2.7 | 2.8 | | | | | trans-striberie oxide | CO ₂ /MeOH
(80/20) | 2.0 ↑ | 1.8 | 1.9 | 1.2 | 1.2 | | | | | Benzoin | Hex/IPA
(90/10) | 1.4 ↑ | 1.3 | 1.3 | 1.2 | 1.2 | | | | | N-CBZ-DL-Alanine | he Hex/IPA/TFA (80/20/0.1) 2.2 ↑ | | 2.0 | 2.2 | 1.7 | 1.7 | | | | | Ibuprofen | Hex/IPA/TFA
(99/1/0.1) | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | | | | Propranolol | Hex/IPA/DEA
(80/20/0.1) | × | × | × | × | × | | | | | Verapamil | Hex/IPA/DEA
(90/10/0.1) | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | | | | ### Preparative performance of new amylose-based chiral stationary phase; Amylose-C Neo ### Ex) Flavanone Detection : UV at 254 nm Temperature : 25°C : 10 µl (0.1 mg/ml) Injection System : NexeraXR (Shimadzu) # Rs: 10 8 ### <Analytical SFC condition> : 5 µm, 250 x 4.6 mm i.d. Eluent CO₂/EtOH (80/20) 3.0 ml/min Flow rate Detection : UV at 220 nm : 13.8 MPa (2,000 psi) Back pressure Temperature : 35°C Injection : 5 ul (1 mg/ml) System : ACQUITY UPC2 (Waters) : 5 µm, 250 x 20 mm i.d. : CO₂/EtOH (80/20) : 60 ml/min Back pressure : 15 MPa (2,175 psi) : UV at 280 nm <Pre><Preparative SFC condition> Column Eluent Flow rate Detection ### <Preparative HPLC condition> Column : 5 µm, 250 x 20 mm i.d. Eluent : Hex/EtOH (90/10) : 20 ml/min Flow rate 250 100 (Loading: 160 mg) # 12.5 ### Even in SFC, the Alcyon SFC Amylose-C Neo column showed greater loadability than Alcyon SFC Amylose-C. It was suggested that the combination of SEC and Alcyon SEC Amylose-C Neo improved separation efficiency by 3.5 times compared to | d
e
e
c
n | 0 | 2 | 4 | ė e | | Am
(Loadi | nylose-
ng: 30 | | | |-----------------------|--------|-----|---|-----|----|--------------|-------------------|--|--| | SFC | | | | | | | | | | | lo | se-C N | leo | | | Am | vlose | -C | | | | | HPLC | | | | SFC | | | | | |--|---------------|-------------------------|------------|------|---------------|---|-------|-------|--| | | Amylose-C Neo | | Amylose-C | | Amylose-C Neo | | Amyl | ose-C | | | | Fr. 1 | Fr. 2 | Fr. 1 | Fr.2 | Fr. 1 | Fr. 2 | Fr. 1 | Fr. 2 | | | Enantiomeric purity (%ee) | >99.9 | >99.9 | >99.9 | 99.7 | 99.9 | 99.7 | >99.9 | 99.8 | | | Yield (%) | 94.2 | 99.4 | 95.7 | 93.7 | <u>95.7</u> | >99.9 | 94.5 | 95.6 | | | Productivity* (mg-product/hr) | 464 | 490 < X · | 2.9
172 | 169 | <u>595</u> | <u>650</u> < ^X | 340 | 344 | | | Fractionated liquid volume (L-solvent/g-product) | 0.34 | 0.54 | 1.15 | 2.88 | 0.18 | 0.26 | 0.39 | 0.57 | | ^{*} Injection intervals; [Amylose-C Neo] SFC: 2.7 min, HPLC: 9.0 min, [Amylose-C] SFC: 2.5 min, HPLC: 9.0 min. - The new amylose-based chiral stationary phase (Amylose-C Neo) is an upgraded model of Amylose-C with enhanced resolution in both HPLC and SFC. - It was suggested that Amylose-C Neo could show 2-3 times higher loadability than Amylose-C. This suggests that Amylose-C Neo could improve productivity per unit time by 2-3 times. ## **Applications of Amylose-C Neo** 2,2'-Isopropylidenebis(4-phenyl-2-oxazoline) : UV at 210 nm : 10 µl (0.5 mg/ml) ■ CHIRAL ART Amylose-C Neo showed enhanced resolution (Rs) on many racemic compounds compared to CHIRAL ART Amylose-C.