Cost-Effective Chiral Separation by Preparative HPLC

Akio Ichikawa*, Katsunori Taniguchi, and Naohiro Kuriyama SEPYMC CO., LTD. Kyoto, Japan

Introduction

Access to optically pure compounds is getting more and more important in the pharmaceutical and other fields. Optically pure compounds can be produced by various methods including asymmetric syntheses, differential recrystallization of diastereomeric conjugates, enzymatic reactions and HPLC separation. In particular, chiral separation by HPLC has rapidly progressed in recent years and is getting highlighted also from the view point of industrial-scale manufacturing.

The greatest advantage of chiral separation by HPLC is possible simultaneous separation of two enantiomers (R-isomer and S-isomer) at high purity and high recovery rate. Various optically active packing materials for HPLC have been developed and marketed so far. Such packing materials are, however, so expensive that the scope of practical application has been limited. Practical applications to industrial-scale manufacturing are still not common.

The YMC has been engaged in this issue in the course of HPLC-related business. We have been trying to modify the manufacturing processes for the chiral packing materials to reduce the cost so that the chiral separation by HPLC can be applied to industrial-scale production. As a result, we succeeded in developing new packing materials, which can be supplied at remarkably lower prices than the conventional ones.

In this presentation, we are going to refer to the characteristics of the new packing materials and the cost-effective chiral separation by HPLC using those.

Points to Consider for Cost Effective Preparative HPLC

Needless to say, the purity and recovery of product purified by HPLC greatly depend upon the preparative conditions, which are therefore suggested to be greatly influential on the purification cost. The following points are considered to be essential for reduction of the purification cost.

- 1. Cost of packing materials The major factor for the high cost
- Optimal particle size and column size.
 To be selected in the light of operating column pressure, loadable amount, resolution performance, etc.
- 3. Scale-suiting separation system. (Single column : Batch production SMB : Continuous production

	YMC CHIRAL PREP CD ST	YMC CHIRAL PREP CD PM
Silica	ultra pure	ultra pure
Particle Size	10μm, 20μm, 50μm	10μm, 20μm, 50μm
Pore Size	12nm (120Å)	12nm (120Å)
Bonded Phase	β-Cyclodextrin without modification of hydroxyl groups	β-Cyclodextrin phenyl-modified
Туре	Chemically bonded silica gel	Chemically bonded silica gel

YMC CHIRAL PREP CD ST Reversed Phase Applications

YMC CHIRAL PREP CD PM

Normal Phase Applications

YMC CHIRAL PREP CD PM Reversed Phase Applications

Listing of Applications

	1	r	T	1	1	r	r	
Compound	YMC CHIRAL PREP CD ST	YMC CHIRAL PREP CD PM	Competitor A	Competitor B	Competitor C	Competitor D	Competitor E	Competitor F
Chlormezanone	0	0				0	0	
Chlorpheniramine	0			0	0			
Chlorthalidone	0				0	0		
Hexobarbital	0				0	0		
Iomatropine	0		0		0			0
erbutaline	0							
hioridazine	0							
olperisone	0	0		0				
rimipramine	0							
enzoin	0	0	0	0	0			
1'-Bi-2-Naphthol		0		0		0		
Chloroamphetamine		0						
arvone		0						
avanone		0	0				0	
oproterenol		0						
letoprolol		0	0		0			0
Methoxy-2-phenylethanol		0						
-(1-Naphthyl)ethylamine		0					0	
orphenylephrine		0						0
opranolol		0	0		0			
Stilbene oxide		0	0	0				

Most of the compounds separable with the competitor's packing materials can be separated with YMC CHIRAL PREP CD ST/PM, indicating the applicability of the latter to a wide variety of chiral substances.

From Analytical to Preparative

From Analytical to Preparative

Purification of Optical Isomer by Using YMC CHIRAL PREP CD ST/PM

Market Prices of Various Chiral Packing Materials

Guideline for Choosing Optimal Particle Size and Column Size

Hiç	jh	Resolution performan Column pressure		Low	Optimal
Internal diamete (mm	er)	Particle size (μm)		Loading amount	Purification capacity /day
	10	20	50		
20				0.1g	1g
50				10	
100			\bigcirc	l Ig	10g
200	\bigcirc			10g	100g
400				100g	1000g
400				10	00g

Guideline for Choosing Optimal Particle Size by Scale and by System

Preparative HPLC Systems : Single Column vs. SMB

- Single Column : Easy to set operating conditions, easy to scale up, easy to switch to other product. But, requires a large amount of solvent per amount of product.
- (DAC Column) : Possible self-packing, easy handling
 - Suitable to short-term production, small-scale production, batch production.

SMB : High productivity per amount of packing material, requires a smaller amount of solvent per amount of product.

Suitable to continuous production, large-scale production

You can achieve cost-effective HPLC production with less expensive YMC CHIRAL PREP CD ST/PM in either case.

Single Column-based Separation of Optical Isomer : Comparison of Purification Cost with the Case Using Competitor's Packing Material

Sample : Propranolol	YMC CHIRAL PREP CD PM	Competitor A
Column	250 x 50 mm I.D.	250 x 50 mm I.D.
Particle size	10µm	10µm
Purification capacity	3.0g/day	3.6g/day
Target amount	20g	20g
Necessary number of da	ys 7days	6days
Purity	>99.0%	>99.0%
Recovery	95.0%	89.6%
Purification cost ratio	0.66	1.0

With YMC CHIRAL PREP CD, you can reduce the purification cost, compared with conventional packing materials.

Example Chiral Separation by SMB

Column number	250 x 30 mm I.D. x 8 *	
Particle size	10µm	
Purification Capacity	30.6g/day *	
Total amount of packing material	1413cm ³	
Purity	95%	
Recovery	80%	

* Experimentally applied to SMB system for simulation.

Conclusions

- Newly marketed two kinds of cyclodextrin-based chiral packing materials
- Widely applicable chiral packing materials usable under both normal and reversed phase conditions.
- Remarkably low prices and excellent separation performance
- Contributable to cost reduction in any type of preparative HPLC system
- Lined-up particle sizes (10 μ m,20 μ m,50 μ m) enabling application to the scale-suiting separation system

