

Utilizing of a novel organic/inorganic hybrid C18 column for efficient method development over a wide pH range

Noriko Shoji, Takashi Sato, Chie Yokoyama, Takatomo Takai, and Naohiro Kuriyama YMC Co., Ltd., Ishikawa , Japan

Three core technologies for particles and surface modification

1. A multi-layered organic/ inorganic hybrid particle

A precise granulation w microreactor technology

high temperature

A proprietary C18 bonding and a multi-stage, multi-

Features & benefits of YMC-Triart C18

Symmetrical peak shapes and reproducible retention for all types of compounds under a variety of mobile phase conditions Improved speed and resolution in UHPLC analysis on 1.9 μm columns with operating pressure up to 100 MPa (14,500 psi) Superior column-to-column and lot-to-lot reproducibility provided by YMC's rigorous manufacturing control system

Outstanding chemical and physical durability over a wide pH range at a

112

Introduction

1. Erythromycin (EA)

pH 7.0

= 700 = 0.89

40

П

N(1) = 700TF(1) = 0.93

Effect of pH change on separation

pH 7.6

N(1) = 500TF(1) = 0.86

The pH is optimized within the range in which the compounds are stable.

The peak shapes and the resolutions are slightly improved by raising the pH.

Effect of temperature change on separation

50

N(1) = 1300TF(1) = 1.04

In method development of high-performance liquid chromatography (HPLC), it requires optimization of several conditions, such as bonded-phase, column efficiency, solvent type, pH and temperature. Especially, pH is the most important parameter to control retention, selectivity and sensitivity of ionic compounds in reversed phase HPLC. Although silica based reversed phase columns have been widely used for analytical and preparative separation, they have low stability under alkaline conditions and a limited usable pH range

Recently, we have developed a new type of organic/inorganic hybrid silica based C18 column, YMC-Triart C18, to improve the chemical stability at expanded pH range and temperature. The novel technologies of manufacturing particles and surface modification provide outstanding chemical stability and excellent peak shape for any kind of compounds under a variety of mobile phase condition.

In this poster, we will show characteristics of this new hybrid C18 column, and some cases of efficient method development in separation of pharmaceutical example compounds and natural products.

The advantages of pH and temperature as tools for optimizing resolution and increasing sensitivity

Specification of YMC-Triart C18

Base material	Multi-layered organic/inorganic hybrid
Stationary phase	Polymerically bonded C18 group (USP class: L1)
Particle size	1.9 μm (New), 3 μm, 5 μm
Pore size	120 Å
Carbon loading	Approx. 20%
End-capping	Yes ("multi-stage end-capping" technology)
oH range	1-12
Temperature limit (Recommendation)	70 for pH 1-7 50 for pH 7-12

Erythromycin ethylsuccinate (EES)

Erythromycin and its derivatives are macrolide antibiotics which have a broad antimicrobial spectrum.

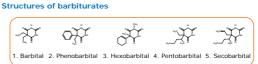
Erythromycins are shown to be easily degraded under acidic (< pH 6.5) or strongly alkaline condition. This instability limits the choice of mobile phase condition.</p>

pH 7.9

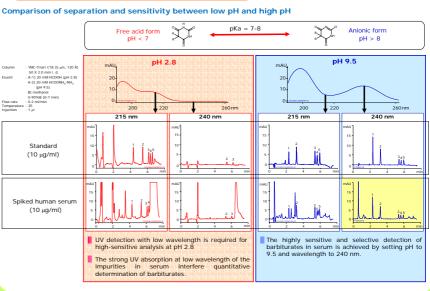
N(1) = 700TF(1) = 0.93

N(1) = 2200TF(1) = 1.14

Π


Rs 0.8[∙]

3. Erythromycin estolate (EE)


> N(1) = 900

1 22 П

Barbiturates have been widely used as psychotropic substances, and some of them are designated to regulate by Convention on Psychotropic Substances.

The structures and UV spectra of barbiturates vary depending on pH. The anionic form at alkaline pH (pH > 8) has a maximum absorption at 240 nm.

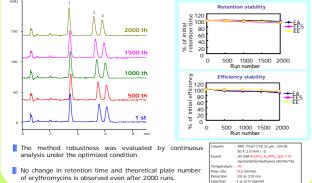
ic-silane lave

ige structure for rid-silica particle

Analysis of anthocyanins under strongly acidic eluent condition (pH 1.5)

The change of structures and colors of anthocyanins by pH

Analysis of bilberry extract with Triart C18


thocyanins in bilberry extracts and foods

- Anthocyanin is a kind of flavonoid pigment found in a various fruits and vegetables
- The chemical structures and the colors of anthocyanins vary depending on pH. The strongly acidic condition is required for reproducible and highly sensitive analysis

used at pH 7.9, and the higher The column temperature is increased tempera-ture provides sharper peaks

- .nm.- Irlart C18 (3 50 X 2.0 mm i. d. 20 mM KH,PO.-K The baseline separation of EES and EE (peak 2 and 3) is achieved at 70
- The impact of tempera-ture is stronger than that of pH for separation of erythromycins.

Evaluation of the robustness of the optimized method (pH7.9, 70)

Conclusions

100

80 61

The enhanced durability and chromatographic performance of YMC-Triart C18 offers the maximum flexibility in separation conditions across an expanded pH range

Triart C18 which has high durability under the strongly acidic condition is suitable for the quantitative analysis and quality control of

1.9 μm YMC-Triart C18 with excellent chromatographic performance and 100 MPa of maximum operating pressure enables ultra-fast and reliable analysis

Identical chromatographic performance and selectivity of Triart C18 across different particle sizes provides mutual method transfer among UHPLC, HPLC and even semi-preparative LC.

http://www.ymc.co.jp