

Twin-column counter-current chromatography for purification of biologics

Lars Aumann¹, Kathleen Mihlbachler²

¹ChromaCon AG. Zurich. Switzerland

²YMC Process Technologies (formerly LEWA-Nikkiso America, Inc.), Devens, MA, USA

Process Performance

The purity specifications were met:

 Less than 0.5% main isoform content of AA, BB in product Less than 30 ng/mg HCP, less than 1.0% aggregate

Process	Yield MCSGP [%]	Yield Batch [%]	MCSGP:
Capture	97%	97%	Increase of yield
CIEX	87%	37%	by from 37 to 879 Reduction of buff
AIEX	93%	34%	consumption by 25%
Total	78%	34%	

Acknowledgements:

This research was carried out jointly with Merus BV, Utrecht,

Netherlands, www.merus.n

This research was supported by Eureka Eurostars (E!6121 ReBAT):

© ChromaCon 2018

MCSGP process principle

MCSGP (Multicolumn Countercurrent Solvent Gradient Purification) is a scalable twin-column chromatographic

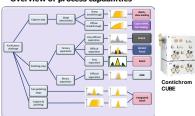
purification process based on the internal recycling of partially pure side-fractions to obtain high yield / high purity

more pure product

MCSGP

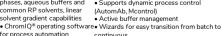
chromatography

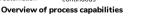
simultaneously


pours p

Batch

chromatography


- /100 bar, 1500 psi


for process automation continuous

 Compatible with all stationary phases, aqueous buffers and common RP solvents, linear

